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The problem is considered of the motion of an initially cold gas that is close to
the motion resulting from the action of a short-time blow, The basic self-simi-
lar solution found by the authors of {1}, [2] and [3] is subjected to small super-
imposed perturbations, after which linearization is carried out on the Euler equ-
ations and the Hugoniot conditions at the shock-wave front, The system of equ~
ations for the variation of the parameters of the gas is reduced to one second -
order differential equation, which in the case of a diatomic gas with ratio of
specific heats » == 7/s is wransformed into the hypergeometric equation of Gauss,
The solution of the problem for the variations permits a proper analytic contin-
uation of the unknown functions into the region bounded by a vacuum, and find-
ing the location of the boundaty itself, In this way is eliminated the well-known
difficulty connected with the divergence of the energy integral in the basic self-
similar solution,

1. The problem of the motion of gas under the action of a short-time blow was set
by Zel dovich [1] in the following form, Leta half-space bounded by a vacuum be
filled with perfect gas having a ratio of specific heats « At the initial instant the gas
is quiescent, its density is constant, and the temperature and pressure are equalto gero,
A strong short-time impulse of pressure is applied at the boundary of the gas, It'is re-
quired to determine the resulting motion for stfficiently large time after the moment
when the impulse ceased to act,

It is evident that a shock wave will propagate through the cold gas, Since the other
boundary of the flow is a vacuum, -the intensity of the shock wave falls-with time in
the maximum possible way, The solution of the formulated problem is self-similar,
and for % = /5 its exact form is established in the works [4 - 6],

Let us now suppose that small perturbations are superimposed on the basic motion and
in order to simplify the mathematical investigation, let us assurmne at the beginning
that x = s

If ¢ denotes the time, ¢ the coordinate, v the speed, p the density and p the
pressure, then under the conditions described above the Euler equations are written in
the form [7]

op | opr g . gv 1 dp -0
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The density P, of the quiescent gas is assumed constant, As for the intensity of the
wave generated by the action of the short«time impulse, we assume it sufﬁcigntly strong
that, unless the contrary is specifically stated, we neglect the pressure 21 ahead of the
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surface of discontinuity, Then for the transition across the shock front, moving with
speed ¢ (), the following relations should be satisfied {7]
v2 = S/gc, p2 == 6p,, P2 = 5/ep1c? (1.2)

Subscript 2 indicates the gas in the shocked state, Besides the Hugoniot conditions (1, 2),
in order to construct a solution of the system of differential equations (1, 1) it is still
necessary to satisfy one more boundary condition, which states that the pressure and
density of the gas vanish at the boundary with the vacuum,

It is convenient to formulate the problem for the variations as an inverse one, writing
for the coordinate of the shock-wave front

zy=(At)s (1 —er™)

Here & is a small parameter, the constant 4 is related to the characteristic pressure
impulse, but remains undetermined, and the power exponent m > 0 under the condit-
ions that the counter~pressure is considered negligibly small, Transforming to new in-
dependent variables ¢ and A = z (4)~", we represent the unknown functions as
v=valf A) +et"fm (W], P = paolg () + & ™gm (W]
P = Ppolh (A) + et"™hp (1) (1.3)

In Eqs, (1.3) the quantities tsq (f) and pso (¢) are determined by the conditions (1,2,

if we assume that
¢ = 3/6A'/lt-’/l

and the density P20 is constant and equal to 6p,. As for the functions / (A), g (A) and
h (A) they are evidently solutions of the short-blow problem [1, 2], Corresponding to
the expansions (1. 3) we write the equation of the shock~wave front in the form

;vs = { — er~m

In accord with the standard procedure of perturbation methods, the initial conditions
for the unknown functions fm, &m and hm are to be imposed at the point 4 = 1. Retain-
ing in all relations only terms of first order in &€ and neglecting terms having a higher
order of smallness, we have at 4 = 1

S . df dg 5 dh
fm = 3 m—1-r;';j' Em = "3 » hm=2(-§'m-—-1)+ﬁ (1.4)

Linearization of the equations of motion (1,1) is carried out completely analogously,

as a result of which we deduce the homogeneous system

df 6 _\d4E dg df
L - YA C e PR -9
6 df 1 dh df 2
(- sr)sf + T [ F+m)] et
- {df 6 4
+ [7;';(/— < A )—-5—1:,8,,,=0
af .. 5 6 dh, 5 dh df 10 [ 4
hd—x+7(f——s—*> T:W'Tﬁfm-r[:m—T(—s‘-Fm) hy =0
This system determines the functions fm, gm . h,, in the semi-infinite interval—oo < A < 1.
It is immediately possible to give some exact solutions of the Cauchy problem (1, 4)

for Egs, (1.5), based on the group properties of the short-blow problem, As is known,
its self-similarity is connected with the existence of a certain group of similarity
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transformations, A shift in the constant 4. leads once again to a soluticn of the short-
blow problem with a certain change in the value of this parameter, In addition, the
original Euler equations and Hugoniot conditions are invariant with respect to a shift in
the time ¢ and the coordinate z. Taking these remarks into consideration, we have

df dg dh
fm==f+Agr En=hgy hp=—2+Agy  for m=0
2 &t g 4 dh
Im =g IHAG Em=h gy A =yhahgy for met
af dg dh 3
= T Em =g hm = for m= 5 {1.5}

In [8] a closed-form integral was given for the equations of one-dimensional
se1f~s1m11ax gas motion, being a consequence of the laws of conservation of enttopy and
particles, "Later the author of [9] established an integral of adiabaticity for the equations
of variations that are taken relative to a self-similar solation. Taking advantage of the
developments in [8, 9] we find that it is possible to deduce a first integral of the system
of equarions (1, 5), which has the form

5 m 3m—1 €n  3—5m b "
=6k T g tTE k= oa @)
The constant € appearing here is determnined from the Cauchy data (1,4}, andasa
resuit- = % {m = 1) (3— 5m)

For the subsequent analysis it is convenient to transform the system of three equations
(1. 5) into one equation for the function /,. The result is of second and not third order
if equation (2,.1) is considered in the process of transformation, To simplify the caleuls
ations we use at once the relations

f=2A—1, g= (=407 h={E~—4"

which give the exact solution of the sharp-blow problem under the assumption that the
gas is diatomic [4 - 61, After changing to the new independent variable § == (5—-—4&} 7
we obtain for the function /4, the hypergeomerric equation of Gauss

&, f
{1 — By i + [t - et BE] *aﬁf 2.2}
o == e 5fam, B =13/ e tam, T—awﬁ“’—s/‘z ‘ (2.3)
The right~hand side of Eq, (2,2} is equal to zero, so that the value of function %, does
not depend upon the constant ¢. The form of the function &, is determined by the
formula
10 2 1 o i )
En= "Bz (0775 CARE™ s 1 0 5m T [ 8 G — O
As for the function n,,, it i found from the integral of adiabaticity (2.1), Both the latter
quantities gm and hy change with changes in the constant in its right-hand side,

For A =1 the variable § = ¥, that is the self-similar coordinate of the shock front
in the short-blow problem corresponds to a regular point of Eq, (2.2), The conditions
(1. 4) arising from the laws of conservation of the flux of mass, momentumn, and energy
of matter in the transition across the surface of strong discontinuity permit a Gauchy
problem to be formulated for the equation that has been found,  and by the same
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token a solution to be determined uniquely in the range %< § < 1.Namely, for § =
TYrwehave  f <=1a(Gm+3),  dfy,/dE=3%m (3~ 5m) (2.4)

The point § = 1 is singular for the hypergeometric equation; in the case under consider-
ation it gives the location of the limiting characteristic in the original self-similar sol-
ution, In fact, the speed of sound is
o= Vxplp =0 VTA%beh (s -4
Hence the equation of the characteristic £ = z, in the solution qf the short-blow problem
is dzofdt =Y A"t [2h — 1 + Y5 YT (5 —4M)""]
If we seek a particular integral of this equation in the form
To = ;_CA'/s t"l
then the values 5. and — Y/, are obtained for the constant Ae . The first of these is to
be discarded, since it leaves the region of determination of the self-similar solution,
and the second value gives just § =1, The continuation of the solution of the problem
of variations through this point should remain regular, since the propagation of any sort
of disturbance does not take place along the limiting characteristic, Thus the basic
question consists in elucidating the behavior of the functions fm+ 8m and hp, in the vice
inity of the point § = 1.The answer depends essentially on what are the values of the
parameters ¢ and p in Eqs, (2, 3).
We assume at first that the difference y — (2 4+~ B) = 5m — 3 is not a whole number;
then the solution of Eq. (2.2) can be given in the form [10]
fm=c¢F(a,Bat+p—y+1:1—5) 4 (2.5)
+eol—P" P Fy—a,y—fy—e—B+11—0)
Here, as usual, the letter F denotes the hypergeometric function, Recalling Egs, (2, 3)
and setting 2—>5m/2 == by we have

a=b—2 b=f—1 a+p—y+1=2b
We now use the known relations [10]

Fbb—152b2)=(p+ 1, YT —z)2®
1

F(l—n,ﬁ;'}’;z):-z‘r——a—)—

=y (1 - z)'ﬂ-n—a-—ﬁ 1%
T

X = [274m9"1 (1 — 2)**BYF (3, B; 45 2))

—ap=—a)t—a+)y—a+2.. g—e+n—1)
to transform the first of the hypergeometric functions appearing in the right-hand side
of Eq, (2. 5), As a result we find
25A-M)gYsf _ gy(5™-2)/2 g2 ( — g)E-STN2 (4 YE)ym-s
(4—5m) (6 —5m)  d§? VE
Now let b= 5m/2— 1. Then @5

Flo,pia--p—y-—11—F=

Y'—a:b_zv Y_ﬁ=b_1/29 Y-“—ﬁ+1=25
and the second hypergeometric function is transformed completely analogously:
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Fr—ar—fir—a—pf+1i1—6=

26m-lg'/s (4 _gy-SM/a g3 (q _gySmia 3-5m

- 5"‘4(5;" F.) w( &) (]i/;- VE) @7
Equations (2, 6) and (2, 7) show that in the case under consideration the solution of the
problem of variations is expressed in terms of elementary functions, This property sig-
nificantly simplifies the subsequent analysis, We substitute the representation (2, 5) into
the boundary conditions (2,4) and determine the values of the constants ¢, and ¢;; both
of them evidently depend upon the power expoaent m. In order that the parameters of
the gas not have singularities on the limiting characteristic § = 1 it is necessary to set
23 = 0 This condition gives

[P r e pia+ bt + i1 -0 =

d
— @B+ 5mx g F (@ 5:a+ﬁ“7+““a)]a-v,=

As was just now established, the hypergeometric functions appearing here are express-
ed in elementary terms by Eq. (2,6). As a result, the quantity m must satisfy a fourth-
order algebraic equation

am S+ am®+ami+am, =0, m =5m (2.8)
with coefficients - = k
a1=4 (1062 V' 7+ 2709), az=2(1503 Y7 4 3906)
as=— (67T YT+ 1799), as=7(7V7T+19)
The first root of this equation is obvious: m; = 0. It corresponds to the invariance of
the original self-similar solution with respect to a displacement of the constant A.
Wwith tne use of Egs, (1.6) we determine the unknown © nctions

jo=1, go=10A(5—4A)"7  ho= (14h — 10) (5 — 4A)"

The invariance of the self-similar solution with respect to a displacement of the co-
ordinate z gives at once the possibility of finding the second root of Eq, (2. 8). We have
my =33 and .

f;/‘= 21 g;/‘ =10 (E —-4)»)— /’, h,/‘=6(5_4l)‘5/2

The remaining two roots are easily determined as the solutions of a quadratic equation,
with -
1 236 Y7+ 602
5 49 YT +133

U‘|CD

my=—, mi= ~ 0.933895 (2.9)

It is essential that the general approach considered, consisting in setting the constant
¢, equal to zero, gave only a finite set of values of m. For the first three of them, the

difference vy — (@ + B) is equal to —3, 0 and -3, respectively; that is, in spite of the
assumption made above, they are whole numbers, Only for the fourth root my is the
difference v — (@ -+ B) in fact expressed as an infinite fraction,

As a rule, at the singular points of a hypergeometric equation one of its linearly in-
dependent solutions is regular, and the other has a singularity, However, the choice of
the parameter m may be achieved such that both of them are represented by analytic
functions in the vicinity of the point § = 4. In this case the perturbations also will not
propagate along the limiting characteristic,

It is natural that this choice of m necessarily gives integral values of the difference
v— (@ 4+ B). we set at first m = (2N + 3) /5 with ¥ = 1, 2, 3, .... Then for the
linearly independent integrals 4 and fi of Eq, (2.2) the following equations hold:
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28 N

3
1= -— _—N—_——— e X - = k1,Ks)
fm F( Ny— N ——5;— 2N+ ;1 52 T Iy A
3 1 1
Il = EON+Y2p (-—N+ 1, —Ne 5 s _E") = 2.40)

= 1)¥-1 (v — q)1 2N 48)2
T (ko )y (- 1)@NABI2 PR (1)

(ky=—=2N, k=3, {=02—§/F)
Here the symbol P{¥u¥) serves as the standard notation for the Jacobi polynomials,
For m= 2N / 5with ¥ = 4, 5, 6.. we have analogously

f 1=F(-—N3—N+_§—;—2N+4;1—E)= 2NN! P(k.‘k.)(t)
m 2 kot )y G+ N
3
1,2 =E@N-DrF (-— N+—=5,—=N+4 %; -;-'—) = (2.44;
— 1)V o(eN=-8)2 (& __ 4)1

(lu +1) Net ¢+ 1)(2N-—s)/2 N-a

(ky = —2N 4 3, k¢= -3/,

The relations (2,10) and (2. 11) solve the given problem, since the gas flow construc-
ted with their help is free of any singularity on the limiting characteristic, The combi~
nation ¢,fp,} + ¢afm” of the functions f,! and fn® can satisfy the initial data (2, 4) if .
the constants ¢, and ¢, are properly determined, It is clear that for N = 1 the constant

¢; = 0. In fact, in this case m = 1, so that the quantity /m* from (2,10) can also be
obtained from the condition of invariance of the self-similar solution with respect to a
displacement in time, Turning to Egs, (1.6), we determine the form of the unknown
BCHOns oy Bh—1), g1 108 (5 — Ay, ha =% (10 + A) 5 — 40"

8, The solutions of the perturbation problem with m = 0,3/, and 1 can at once be
excluded from consideration, Indeed, changing in a proper way the constant 4, the
origin of time and the coordinates, it is easy in the linear approximation to make them
expansions in powers of the basic self-similar solution, Henceforth we will assume that
this precedure has been accomplished, The smallest values of m are given by Egs, (2. 9),
where a direct test shows that the formulas

f=1o (14202, g =— 52 (5 —4M)"s + 522 (5 — 41)77* (1 + 24)° (25 — 6h)
= 8/2g (5 — 4A)7* 4 1/2s8 (1 + 27)® (5 — 4A) 72 (465 — 246A)

are a representation of the unknown functions for m = %/;. They follow from Eq. (2, 5)
if in it we set ¢; = U and ¢, = 3-67%- 7%

The self-similar solution of the short-blow problem states that the gas instantly spreads
through the whole initially empty half-space, In the vicinity of the infinitely remote
point the behavior of its parameters expressed by that solution is incorrect; hence, as is
known [1, 2], the energy integral is found to be divergent,

Overcoming this difficulty is associated with the proper analytic continuation of the
solution of the Euler equations in the region of large negative values of the coordinate
z. As z — — ©0 also the similarity variable 4 — — oo if the time ¢ is assumed fixed,
Letting the absolute value of A tend to infinity, we write asymptotic expansions for the
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functions fm, &m and k,,. For any value of the power-law exponent m we have
m=A1(5~ 41)(61"—8)/2 + A3(5— 4}')57"/!
8, = B1(5 — 4A)H™2/2 1 By (5 — 4A)5™-D/2 L By (5 — 4p)Km-1)i2 (3.4)
P = C1 (5 — 4A)B™8V2 . 04 (5 — GA)S™DI2 L (5 — 43, )(Em-3)/2

Here the constants 4, and 4, are to be calculated from the initial data (2,4), and the
remaining constants are expressed in terms of them by means of the formulas
25 (1 —m)

By = (8 —5m) A1, By= 5 A
5 36 — 35,
Bi=giEmray 10m =)@ —5m + 94, C="""T4 32

5(3—1Tm) 1
Cn=-——-———2 Aa, C’=7(5m+§5(3-—5m) [50 (m — 1) (3 —5m) 4 3 (1 — 35m) A3},

The asymptotic representations of density and pressure are written as
p=pw (5 — 4A)~"[1 + eBy ™ (5 — 41)5™1]
P =P (5 — A" [1 4 eCat™™ (5 — 41)5™2]
It is not difficult to see that as A — —oo the product
et™™ (5 — 4A)5™2 (3.9

can prove to be a quantity of order unity, even if ¢ — oo, and the parameter ¢ is chosen
as small as desired, Hence it follows that for large negative values of the coordinate =
one cannot seek the solution of the Euler equations in the form (1, 3),

In fact, in the region bounded by a vacuum, different terms in the expansion for den-
sity and pressure become of comparable order of magnitude, which contradicts the basic
principles of perturbation theory, In order to extend the solution properly into-this region
we use the method of matched inner and outer asymptotic expansions, the essentials of
which are explained in the books of Van Dyke [11] and Cole [12],

From the condition that the order of magnitude of the product (3, 3) be finite follows
the determination of 3 new similarity variable

= — 48',(5'") t—‘/ik —_ 48’/(5”‘) A a1

in the inner region of gas flow, The singularity in the function f,, as A —» — oo is not
so strong as to show an effect on this choice, Thus in the inner region we set

y == e A= [ By (1) 4 6™ e Fy (1)
p = pue™ ™t [Go () + £7C™ Gy ()] (3-4)
p= E% oo e l6™ =k [Ho (n) + &75™ hHL ()]

We now use the formulas giving the exact solution of the short-blow problem, and the
asymptotic representations (3,1) that determine the solution of the perturbation problem
to deduce the limiting conditions that the unknown functions must satisfy as A = —

— 1.

Following the standard procedure in the method of matched outer and inner asymptotic
expansions, we substitute all the relations mentioned into Eqs, (1.3), giving the chara-
cteristics of the gas in the region whose boundary serves as the front of the strong shock
wave, Hence for n — 0 we deduce for the leading terms
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Fom =1, Go—n™4BmS@-™/%,  How 0 -G~ @52 (3.5)

and quite analogously for the functions of the first approximation
2% e
Fym—2(1 — A®™2), G1— — («-5- 4~ — BsBey~(-5mi2 )
Hy e — {18 1~ — CCan™® -myz’y 3.8)

The coefficients appearing here are found with the use of Eqs. (3.2), whence
25 (m —
Bi= 55m — 2"‘)
5
L S— 1) (5m — 3} — (245m3 — 112m — 39} Aa]
Substitution of the relations (3, 4) into the original Euler equations (1. 1) gives in the

zeroth approximation ) ......_=
PP s‘g“’ﬂnu*o) +Go=0, Goln+Fo) g =0

[50 (m —1) (3 —5m) +3(1 — 35m) A4z]

L Y R @)

As for the correction qmntmes, they satisfy the following system of ordinary differential
equations:

F dG dGi 7 dF
& dH,
Go(ﬂ+ﬁ'o} d,} +Ge(5 + dn)Fx-f—(ﬂ—i—Fn) T a;—-——s—--ﬁﬂ 3.8)
i,  dH, dF,
5 ;R d,, + 0+ Fo) G- + g FL+ 5 (9+7 T ) Hr=0

There exist two possibilities for the integration of the second of Eqs, (3, 7)., First, the
function Fo = const js its simplest solution, but it contradicts the limiting condition
for n — 0. Second, if we examine the solution F, = —n, then this condition is auto-
matically satisfied, As solutions of the two remaining equations of the system (3, 7) it
is then possible to take arbitrary functions

Gy = @ (n), Hy=¥(n) (3.9

the only restrictions on which are simply that for 1 — O they must go over into the ex-
pressions {3, 5),

It is easy to see that with Fy = —n the system (3, 8) turns into algebraic equations,
As a result
4 1 a¥ 5 dOF, 5 ,d¥ dF;
AerTE G=—T m BT (FwhrTYE) @0

that is, the correction to the speed in the first approximation also includes arbitrary
functions, As one can convince himself by direct verification, the functions F,, G1
and H, satisfy the limiting conditions (3, 6),

Formulas (3, 9) and (3, 10) complete the construction of the solution in the inner region,
where the basic dependence v = z/t of the speed on the coordinate turns out to be linear,
The arbitrariness in the choice of the functions G, and H, determining the density and
pressure of the gas reflects different possibilities of action on it in the initial time period,
With a change in the character of the impulse these functions will also change, It is re~
markable that the method of matched outer and inner asymptotic expansions, which is
essentially a method of analytic continuation of the solution from one region into ano-
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ther, allows consideration of the arbitrariness, which is evident from a physical point
of view,

The divergence of the energy integral in the self-similar solution of the short=blow
problem is connected [1, 2] with a singularity in the behavior of the gas parameters
for z, A — —o0. The solution constructed in the inner region allows this difficulty to be
eliminated, In fact, the functions ® and ¥ can be chosen, for example, in such a
way that they vanish at a finite value of 7. Then in the process of expansion the gas in
a finite interval of time will occupy only a finite part of the initially empty space, If
it is assumed that in a small neighborhood of the boundary separating it from the vacuum
a flow of the type of a simple Reimann wave is achieved, then the speed vy of the edge
particles is easily calculated

ym— g, ay=—5a @.41)
where g, is the speed of a sound wave at the initial instant of time in the application
of the impulse, For a different nature of the flow near the boundary, Eq, (3,11) cannot
be used to determine the speed v, but it will remain finite for finite values of the
perturbation pressure, In any case, convergence of the energy integral can be postulated
for the choice of the functions @ and ¥ and the construction of the full solution in the
outer and inner regions,

4, We show in conclusion how, by use of variations of the basic solution, to consider
an exterior counter-pressure Pi,» which up to now was assumed negligibly small, Let g,
be the speed of sound in the undisturbed state, Expanding in series the exact Hugoniot
relations [7] .

5 ay? [ a2 -1 5 R 1 a
vg:—.—é—(i——c;)c, pa=6px(1+5—gz—) ) pa=‘{;‘9w'(1——*7——;r) (4.1)

which in the case under consideration must replace Egs, (1,2), it is easy to show that

the power-law exponent m = —*/;. We introduce the dimensionless time t = ¢/ t;,
where [ pr A\
h= ( n )
If we put the small parameter ” n
g=4 = p1 A'h

then the expansions (1. 3) for the unknown functions in the outer flow region can be
written as 4, ./
v=mw [f (M) + vy M) P =pm [g () + Ty, (M)

P =P [k () +17%h_y (M) (4.2)

with the previous values of Uz, P20 and pag. Having taken the dimensionless coordinate
A, of the shock-wave front in the form
he = 1 — k' (4.3)
we have for the speed of its propaga&on
e=3)s YV puprt= (1 — 73 k1) (4.4)
The constant  in formula (4,-3) remains at present undetermined; its value will be es-

tablished later, Using the relations (4,1) and (4, 4) we deduce the initial eonditions for
the unknown functions, namely for A =1 ;
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<
g, =—fs— sk,  g_y, = — 15+ 10k, hoy=—"%+"F k (4.5)

These perturbation functions obviously satisfy the system of linear equations (1. 5),
where it is necessary to take m = —*/,. As above, it is very convenient to change to
one second-order differential equation for fay Recalling Eq, (2.2), we have

af _y,

d¥ 1 -
B — Dt — 5 G-+ 13— — Ty, =0 (4.6)

We divide the solution of Eq, (4, 6) into two parts

T =% + ks
and represent the remaining functions in analogous form
8.1,='"1+k¢2’ h_a;|=x1+ kXs

The initial valyes for the quantities introduced in this way follow from (4, 5), They give
the possibility of formulating a Cauchy problem for the functions %1 and ¢,. For

E ="/ we find
Pr==~3fy,  dQifdf = —0; @3=—1/3, doy/df = — 4.7
We write the lineary independent integrals f1, and 72, of Eq, (4.6) as

7
Py =B~ (1 +218), o, =) bt — &

g
Here the coefficients are

7 .35 35 35 35
b’=24'64’ b'=—6-64’ bd='—3_21 b5='1'§1 b&'————i-z" by=1

Both functions 2 and £, are non-regular at the point £ =1, but their linear
combination - . 7
Iy, = 12 f.l.l), - fio/, (4.8

is, as is easily seen, a regular function at that point, Solution of the Cauchy problem
(4. 7) allows the functions @, and ¢, to be represented in the form

1 =dif, .+ leio/,s Pz = dﬂfi«/. + ‘ﬂic/l

with the constants determined in a unique way
dy = 1.319-10%, ¢, = —2.327.108, d, = 1.458.10%, e, = 2.090.10%

The ratiod, / ¢, = —0.567, while at the same time d; / ¢, = —0.698. Both these values
are different from the coefficient — 7/12 = 0.583, that appears in the expression (4, 8)
for 7., ; therefore the functions @,.and ¢, are nonregular at the point § = 1.

For arbitrary values of the parameter ¥ in the equation of the shock front, the solu-
tion of Eq, (4, 6) will also contain a singularity at that point, However, by proper choice
of & the flow field can be made to remain analytic at the intersection with the limit-
ing characteristic, The evident condition for this is the requirement

dy + kds 7
e ke T 12
from which & = —1.586. Finally, we find
fy,=Ef., E = —2.858.10% (4.9)

For the remaining functions £-y, and _,;, the following formulas hold:
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. df-y,
gy=—5 (16" {vs Co(T§) 1+ E [1/2 (G478 f .y, +EE —1 TELH (4.10)

af_g. 1

1 . )

h_.,l = — + (7E)-'/a {509 (&1 + E [T (105 4 203 §) f_,, + 208 (E —1) _HTL]!

The constant ¢, is connected with the constant C in the right-hand side of the integral
of adiabaticity (2.1) by the relation Co = $1C = 0.543. 102

The constructed solution does not need a special extension in the region situated
behind the limiting characteristic; therefore the representations (4, 2) for the speed,
density, and pressure can be used for a description of the entire flow field if one spec-
ially selects the corrections that take into account the presence of external counter-
pressure,

It is clear that the complete solution of the system of Euler equations in the zone
bounded by a vacuum should contain the analytic continuation considered in the previous
section, However, terms due to counter-pressure will not have any effect on the struc-
ture of the latter, In order to be convinced of this assertion, we extract the asymptotics
of the functions /_¢,» K-, and h_, for A — — oo. It follows from formulas (4, 9) and (4,10)
that
foq=5.94-100 5 —4A)y2, g, = —7.26.408(5 —4A) vy Py =—5.66.102(5 —dp)~e
The asymptotic representations of the density and pressure take the form

P =601 (5 — 4A)"7 (1 — 7.26.10%% (5 — 40y (4.11)
p=%0prt™" (5 — 4h)™* [1 — 5.66.102c"4 (5 — 4A)3)

The correction terms from the differences enclosed in brackets on the right-hand sides of
the relations (4.11) become arbitrarily small as A — — oo for fixed values of time,
Consequently the self-similar solution of the short-blow problem gives the leading terms
in the expansions of the parameters of the gas also in the region behind the limiting
characteristic,
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Expressions for the general solution of the axisymmetric problem obtain ed
earlier in terms of two analytic functions [1, 2] are wansformed in such a man-
ner, that only one of these functions remains under the integral sign, This also
leads to the possibility of solving the axisymmetric problems by employing the
methods used in the solution of the plane problem, Basically, similar wansfor-
mations were employed in [3 ~ 5] for the particular case of a plane boundary,

A series solution for a hollow sphere with various boundary conditions at its
surface is used to illustrate the method,

1, As was shown in [2], the components of the elastic displacement in an axisymme
etric deformation of 2 solid of revolution can be written as
1
2Gw (z, 1) = 4 g (O — Rz =D D —v®)] &
i ;~ . £ (tv ;)

t
0=t \be®+ @—Dr@+eOIneDE  an
h

2mir

et 0=VE-0C—0 @atd=—t—5H/kd

Here z and r are the cylindrical coordinates (s is the axis of symmeuny), u», «
are, respectively, the axial and radial displacements of a point, x = 3— 4v, v is the
Poisson ratio, ¢ is the shear modulus, ¢ and ¢ are analytic functions of the complex
variable { = z + i¥, holomorphic in a symmetrical plane region D occupied by the
meridional section of the body, z, y are rectangular coordinates lying in the plane of
the above cross~section ( =z -axis coincides with the 2 ~-axis), and the points ¢ = z -}
4+ ir andt = z— ir lie on this plane within D. The order of integration in (1,1) is
arbitrary, The analytic functions satisfy the condition



