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The problem is considered of the motion of an inirially cold gas that is close to 
rhe motion resulting from the action of a short-time blow. The basic self-simi- 
lar s&tion found by the authors of fl). f2j and pf fs subjected to small super- 
Impd perUrbat%ons, after which ~~~~~a~on is carrfed out on the Eufrr equ- 
ations and rhe Wugoniot conditions at the shock-wa& front, The system of equ- 
adans for Ithe variation of the par~~&~~8 of the gas is reduced to one second - 
order differential equation, which In the case of a diatomic gas with ratio of 
specific heats x = ‘Is is transformed into the hyprgeometric equation of Gauss. 
The solution of the problem for the variations permits a proper analytic oontin- 
uation of the unknown functions into the region bmmded by B vacwm, arid find- 
ing the bcation of the boundary itself. in this way is eliminated the weMmown 
difficulty connected with the divergence of the energy integral in the basic self- 
similar solution, 

t The problem of the motion of gas under the action of a short-time blow was set 
by Zef do&h [If in the fobbing form, Let a half-space bounded by a vacuum be 
filled WM perfect gas having a ratio of specific heats iz At the initial instant the gas 
is quiescent, its density is constant, and the temperature and pressure are equal to zero. 
A strong short-time impulse of pressure is appUed at the baundary of the gas, It is re - 
quired to determine the resulting motion for sufficiently large rime after the moment 
when the imp&e ceased to act, 

‘ft is evident that a shock wave ~31 propagate through the cold gas. Sin$e the oxhet 

boundary of the flow is a vacuum. the intensity of the shock wave faf?s with time in 
the maximum possible way. The solution of the formulated problem is seif*sir?ilar, 
and for )(r ̂ I 71$ its exact form is established in the works [4 * 61, 

Let us now suppose that small perturbations are superimposed on the basic motion and 
in order to simplify the mathematical investigation. let us assume at the beginning 
&at X ==5 ‘f.3. 

If t denotes the time, s the coordinate, u the speed, p the density and P the 
pressure, then under the conditions described above the Euler equations are Written in 
the form f?] 

@P UP1 87) t3P 
3tC-X ==#, 

t dp 
-;ji--SC&-i- P & -- __o 

U.ff 

SP %J 7 at-_0 at’- “~““~P i)= - 

The densfry Q1 of the quiescent gas is assumed constant, As for the intensity of the 
wave generated by the action of the short-time impulse, we assume it sufficicnrly smong 
thar, UnltJs the contrary is speeificallv stated, we neglect the pressure Pi ahead of the 
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surface of discontinuity. Then for the transition across the shock front, moving with 
speed c (t), the following relations should be satisfied fl] 

2Q = 5/5c, PZ = 6~1, p;r = “/tqd W) 

(A:)~~ (1 - lXrn) 

Here e is a small parameter, the constant A is related to the characteristic pressure 
impulse, but remains undetermined, and the power exponent m > 0 under the condit- 

ions that the counter-pressure is considered negligibly small. Transforming to new in- 

dependent variables t and h = z (At)-“*, we represent the unknown functions as 

u = unoIf (h) + e t-“f, (A)], P = PO0 k (W + ermg, 041 

P = ~00 Ih Q4 + el-mh, @.)I (1.3) 

In Eqs. (1.3) the quantities tit0 (t) and pto (t) are determined by the conditions (1.2) 
if we assume that 

e = aI5 A*$-% 

and the density Pzo is constant and equal to 6p,. As for the functions I @), g (A) and 
h (h) they are evidently solutions of the short-biow problem Cl, 23. Corresponding to 

the expansions (1.3) we write the equation of the shock-wave front in the form 
?,, = i-et-m 

In accord with the standard procedure of perturbation methods. the initial conditions 
for the unknown functions f,,,, g, and & are to be imposed at the point h = i. Retain- 

ing in all relations only terms of first order in e and neglecting terms having a higher 
order of smallness, we have at h = 1 

Linearization of the equations of motion (1.1) is carried out completely analogously, 
as a result of which we deduce the homogeneous system 

(1.5) 

This system determines the functions f,,,, g,,, . h,,, in the semi-infinite interval-,= < h < 1. 
It is immediately possible to give some exact solutions of the Cauchy problem (1.4) 

for Eqs. (1.5), based on the group properties of the short-blow problem. As is known, 
its self-similarity is connected with the existence of a certain group of similarity 



transformatlions, A shift ixr Che constant A leads once again to a soWic=~ of the short- 
blow problem with a certain chmge in the value of this par?meter_ In addition. the 
origlttal Euk3r eqtzatiotts and ~~~o~ot co~d~ti~~ are invariant with respect to a shift in 
the time t and the coordinate z. Taking these remarks into consideration, We have 

a In fxl] a closed-form integral was @vr?n for the equadons of one-dimensional 
self-simil;4u @4s motion, being a consequences: of the laws of conservation of entropy and 
particle% Later the author of f9] established an integral of adiabatici .for the equatioa 
of var%tfbns that are taken relative to a se~-~~rn~~ so&ion. T&&g a&at&age of the 
dewloprn@nZs in IS, 93 we find that it is pcssibfe to deduce a first integral oi” the system 
of equariam (1.5). which has the form 

(2.f) 

The mutant G appearing here is defiled ikern the Cauchy data @;4f, anrf as a 
resuft * e = y* fm - 1) 13 - 5m) 

For the subsequent atlnXysis it is convenirisrrt to transform the system of three equations 
(1.5) inxa one equation fobr thhp function 1”%. The result is af sec6nd and nat Chifd,order 
if equatW3 f!kl) is considered in the pr@?ess of ~~sf~rna~~~ To simpfif) ‘tfte cakub 
atbns we 83se at once rhe Wations 

f = 2x - 2, g = @-$x)-s~~, k = (5 - .a)“” 

which give the exact soluCI,on of the sharp*blow problem undsr the assumption that the 
gas is diatomic f4 - 63. AtieLtr changing to tile new independent variable g =CL? (5-d@ /7 
we obtain &x the function fm the h~~r~e~rne~~ equation of Ga.uso 

d”!, df* 
<(i-O &p tf7-((1_E_riplfSI~-a8f,=O (2.2) 

QSur mfmI fl = a/., - ‘/sm,, 7 = CI - p z - “(2 (2.3) 

The right-hand side of Et& (S&I) is equal Co zero, so that Che value of fu~?cCiot~ fm does 
not depend upan the coastgnt G. The farm of the function gm is determined by the 

fOTmUfa 

As for ths betion I%, it is found from the integral of adiabaricity (2.1), Both the latter 
quantities g, and & change with changes in the constant in its right-band si+, 

FOI h J= ‘1 @e aariable: E I- x,fk &at is t&e self-similar coordinate of the sbck froz~t 

in the sMrt4k~ proMem wtrespctnds &I? & mgubr point of Eq. @, -2). T&e co~d&ions 

(1.4) arisfag from the laws of conservation of the fIlux of mbss, momentum; Brad energy 
of matter In the transition itcross the surfacs of strong discafltinuity permit +I Cauchy 
problem ~a be formulated far the equation that has been fawd, and by thl?s Sdme 
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token a solution to be determined uniquely in the range ‘6 % < 1. Namely, for % = 

= rfr we have 
f, = r/a (5m + 3), df,/df = ‘Vzm (3 - 5m) (2.4) 

The point % = i is singular for the hypergeometric equation; in the case under consider- 
ation it gives the location of the limiting characteristic in the original self-similar sol- 

ution. In fact, the speed of sound is 

a = JfxT i l/,0 vFA”l” t+ (5 -4h) ‘la 

Hence the equation of the characteristic z = z, in the solution of the short-blow problem 
is dx Jdt = l/zAYh t-“” [ 2L - 1 + r/s fl(5 - 45)“‘i 

If we seek a particular integral of this equation in the form 
zC = ?,&‘A t% 

then the values =jo and - l/* are obtained for the constant AC . The first of these is to 
be discarded, since it leaves the region of determination of the self-similar solution, 

and the second value gives just % z 1. The continuation of the solution of the problem 

of variations through this point should remain regular, since the propagation of any sort 
of disturbance does not take place along the limiting characteristic. Thus the basic 

question consists in elucidating the behavior of the functions f,, g, and h, in the vic- 

inity of the point % = i.The answer depends essentially on what are the values of the 

parameters a and p in Eqs. (2.3). 

We assume at first that the difference y - (a + fi) = 5m - 3 is not a whole number; 

then the solution of Eq. (2.2) can be given in the form [ 101 

~,-c~F((L,B;~+B-Y+~;~-%)+ (2.5) 

-!- cz (i - %)6”-3F(~-a,~-fi;v-a-~++;i-%) 

Here, as usual, the letter F denotes the hypergeometric function, Recalling Eqs. (2.3) 

and setting 2_5m/2 * b, we have 

a=b-2, b = /3 - l/%, a+B- y+l=26 

We now use the known relations [lo] 

F (b, b - l/n; Ib; 3’) = (I,+ + l/Z l/c)l-‘b 

F (3 -n, p; r; 2) = (r _’ a), $+x--y (i_ z)Y+--P j( 

Zr+n--a-l (1 _ z)=+~F (a, B; ‘r; 41 

(Y- ain = (y- a) (y- a + I) (y- a + W.. (v- a + n- i) 

to transform the first of the hypergeometric functions appearing in the right-hand side 

of Eq. (2.5). As a result we find 

F(a7b~+-S--r+ki-E)= 

pw)~%(~ _ ~)(5m-2)/2 @ (1 _p-wa (1 + I/fg5m-8 

(4_5m)(6_5m) v 
l/f; 

Now let b = 5m / 2 - 1. Then (2.6) ’ 

Y- a-b- 2, y--B=b-Vi, Y--a-fi+i=2b 

and the second hypergeometric function is transformed completely analoaously: 
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= 
26~9 (i - pm/a $A (i - <)5mj’ (i + J.q+m 

Sm(Sm-2) 
IT 

(2.7) 

Equations (2.6) and (2.7) show that in the case under consideration the solution of the 
problem of variations is expressed in terms of elementary functions. This property sig- 

nificantly simplifies the subsequent analysis. We substitute the representation (2.5) into 
the boundary conditions (2.4) and determine the values of the constants c1 and cz; both 

of them evidently depend upon the power exponent m. In order that the parameters of 

the gas not have singularities on the limiting characteristic i = 1 it is necessary to set 
:% = 0 This condition gives 

35m (3 

[ 
-5m)F(a,B;a+B-r+i;i-a- 4 

-(3+5m)x -$F(a,@a+8-7+f;i- 4 E-‘/r 
=o 

As was just now established, the hypergeometric functions appearing here are express- 
ed in elementary terms by Eq, (2.6). As a result, the quantity m must sat@ a fourth- 
order algebraic equation 

-,a + arma5 + ayn,a + aim, = 0, m = 5m (2.8) 
with coefficients 

as = 4 (1062 VT+ 2709), a2 = 2 (1503 VT+ 3906) 
as = - (677 VT+ 1799), a4=7(7 v/7+19) 

The first root of this equation is obvious: ml = 0. It corresponds to the invariance of 

the original self-similar solution with respect to a displacement of the constant A. 

With the use of Eqs. (1.6) we determine the unknown ’ .nCtiOIB 

,io = 1, go = iOh (5 - 4h)-‘$ ho = (14h - 10) (5 - 4a)-S” 

The invariance of the self-similar solution with respect to a displacement of the co - 
ordinate z gives at once the possibility of finding the second root of Eq, (2.8). We have 
In, = 3 1%. 

and /a,,, = 2, g,,. = 10 (: - &)-71X, hy, = 6 (5 - 4h)-+ 

The remaining two roots are easily determined as the solutions of a quadratic equation, 
with 

6 
t7&s=- 

i 236 )/i-t692 Zo933695 -- 
5 ’ ln4- 5 49Jfi--cl33 * 

(2.9) 

It is essential that the general approach considered, consisting in setting the constant 

c:, equal to zero, gave only a finite set of values of m. For the first three of them, the 

difference *t - (c +- p) is equal to -3, 6 and $3, respectively; that is, in spite of the 

assumption made above, they are whole numbers. Only for the fourth root m, is the 
difference Y - (a i 6) in fact expressed as an infinite fraction. 

As a rule, at the singular points of a hypergeometric equation one of its linearly in - 
dependent solutions is regular, and the other has a singularity. However, the choice of 
the parameter m may be achieved such that both of them are represented by analytic 
functions in the vicinity of the point 5 = 1. In this case the perturbations also will not 

propagate along the limiting characteristic. 
It is natural that this choice of rn necessarily gives integral values of the difference 

Y- (a + 6).We set at. first m = (L!N + 3) / 5 with N = 1. 2, 3, . . . . Then for the 

linearly independent integrals f h and fi of Eq. (2.2) the following equations hold: 
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1 l=F _*~-hL--. 2 ,-2N+i;1-6 
2NNI 

= m 
(kl-tq&-tV 

Pp*kd (6) 

(- i+ (N - i)! 2(5N+*y2 p()tl,k,) (t) 

= (ka + i)N_l (6 + 1)(2N+8)‘2 N-1 

(k, = --2N, kt = V2, t = (2- E) I E) 

Here the symbol P$ 11 * serves as the standard notation for the Jacobi polynomials. k, 

For nh= 2N i Swith N = 4, 5, 6.. we have analogously 

f,l=P -N;--NN+ +;--2N+4;1+ = 1 2NNI 

(ks + f)N (r, + i)N 
p(Nk,JQ (t) 

-N++,-N+4; +; -+ 

(- f)N 2(sN-a)/2 (N - 4)l 

= (kc + 1)N4 (t + f)(2N-8”a 
p(W3 (t) 

N-4 

(k, = -2N f 3, k, = -Q) 

The relations (2.10) and (2.11) solve the given problem, since the gas flow construc- 
ted with their help is free of any singularity on the limiting characteristic. The combi- 

nation cljml + Cafm’ of the functions f,r and j,” can satisfy the initial data (2.4) if 
the constants cI and ct are properly determined. It is clear that for N = 1 the constant 

CZ = 9. In fact, in this case m = 1, so that the quantity fm’ from (2.10) can also be 
obtained from the condition of invariance of the self-similar solution with respect to a 

displacement in time. Turning to Eqs. (1.6), we determine the form of the unknown 
functions 

11=*/a (5h - 1). g1 = ioa (5 - 4Q-‘A, hr is a/a (10 + A) (5 -4P 

3. The solutions of the perturbation problem with m = 0, 3/s and 1 can at once be 
excluded from consideration. Indeed, changing in a proper way the constant A I the 
origin of time and the coordinates, it is easy in the linear approximation to make them 

expansions in powers of the basic self-similar solution. Henceforth we will assume that 

this precedure has been accomplished. The smallest values of m are given by Eqs. (2.9), 
where a direct test shows that the formulas 

j = I/O (1 + W)l, g =- 5/a (5 -4h)“’ + ~/ZSZ (5 - 41b)-‘A (1 + 2Q3 (25 - 6h) 

h = 51s (5 - 4@ + 1/75a (1 + 2h)* (5 - 4h)+, (465 - 2461) 

are a representation of the unknown functions for m = a/o. They follow from Eq. (2.5) 
if in it we set c, = 0 and c2 = 3.6-s.7y. 

The self-similar solution of‘the short-blow problem states that the gas instantly spreads 

through the whole initially empty half-space. In the vicinity of the infinitely remote 
point the behavior of iu parameters expressed by that solution is incorrect; hence, as is 
known [ 1, 21, the energy integral is found to be divergent. 

Overcoming this difficulty is associated with the proper analytic continuation of the 

solution of the Euler equations in the region of large negative values of the coordinate 
2. As .z:-r- 00 also the similarity variable h - - = if the time t is assumed fixed. 
Letting the absolute value of li tend to infinity, we write asymptotic expansions for the 
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functions f,,,, g, and h,. For any value of the power-law exponent m we have 

fm= A1 (5 4 4A)(*-s)‘* $ Aa (5 - 4h)5m'* 

gin 
= & (5 _ 4#"'+3 + Ba (5 - 4Q(5m-i)‘2 + Bs (5 - 4Qr@-1);2 

h, = Cl (5 - 4#6’“-*)‘a + cs (5 - 4@or)/s + c3 (5 - 41)(3m-3)/3 

13.1) 

Here the constants A I and A2 are to be calculated from the initial data (2.4), and the 
remaining constants are expressed in terms of them by means of the formulas 

BI = (8 - 5m) AI, Bu= 25 (1 - m) 
2 A2 

Ba= 5 
m 

IlO 
(m 

- 
1) (3 

- 
5m) + 941, Cl= 

36 - 351n 
5 A1 (3.2) 

cnX 5(3-7W 1 
2 Aa, Cs- 7(sm+2)(3__) [50(m-1)(3~m)+3(1-35m)A31, 

The asymptotic representations of density and pressure are written as 

P=P20(5- 4b)'*" [i + e&t-m (5 - ti)6”/3] 

p = po (5 - 4A)+ [ 1 + eCst-m (5 - 4A)sm/s] 

It is not difficult to see that as A - -00 the product 

etmm (5 - 41)5m12 (3.3) 

can prove to be a quantity of order unity, even if t + 00, and the parameter e is chosen 
as small as desired. Hence it follows that for large negative values of the coordinate z 

one cannot seek the solution of the Euler equations in the form (1.3). 
In fact. in the region bounded by a vacuum, different terms in the expansion for den- 

sity and pressure become of comparable order of magnitude, which contradicts the basic 

principles of perturbation theory. In order to extend the solution properly into this region 
we use the method of matched inner and outer asymptotic expansions, the essentials of 

which are explained in the books of Van Dyke [ll] and Cole (121. 
From the condition that the order of magnitude of the product (3.3) be finite follows 

the determination of a new similarity variable 

,, _ _ ,&‘/(6m) +k _ _ 4e’/(sm)A+,& 

in the inner region of gas flow. The singularity in the function f,,, as I. - - m is not 
so strong as to show an effect on this choice. Thus in the inner region we set 

U = + A5f*aeJ/(srn) [PO (q) + e*/(sm) f+ PI (q)] 

p = ps&P t-1 [c, (n) + E*‘(am) t-%1 (11) 1 (3.4) 

P = -$- ploA*f*e’~(am) t-“r [Ho (71) + B*‘(5m) t3”HI &)I 

We now use the formulas giving the exact solution of the short-blow problem, and the 
asymptotic representations (3.1) that determine the solution of the perturbation problem 
to deduce the limiting conditions that the unknown functions must satisfy as A = - 
- 1. 

Following the standard procedure in the method of matched outer and inner asymptotic 
expansions, we substitute all the relations mentioned into Eqs. (1.3). giving the chara- 
cteristics of the gas in the region whose boundary serves as the front of the strong shock 

wave. Hence for n - 0 we deduce for the leading terms 
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PO-r-q, Go ~ ,,-% + &q-6 (1-m) 1 a, Ho mq qAf* +C@dm)fa 

and quite analogously for the functions of the first approximation 

Fl ti - 2 (i - As$~‘~), Gl - - _ Bt&p5m)h 

(3.5) 

The coefficients appearing here are found with the use of Eqs. (3.2). whence 

B4== 25(m--) [50(nt--)(3-5m)+3(1--35nt)Asl 
42 (57n - 2) 

G = f4(5z+2) f50(ni--)(5m-3)--(245ms--Lf2nr -WAsI 

Substitution of the relations (3.4) into the original Euler equations (1.1) gives in the 

zeroth approximation dFo 
~~~+(~~~~~~+Go~O~ ~t~+F~~~=~ 

+ Ho y$ +(q+P0)$$++Ho=O (3.7) 

As for the correction quantities, they satisfy the following system of ordinary differential 
equations: 

Go % + (rl + PO) % + dn dCoFI+(++~)G~=O 

Go01 +J’o)~ dFr +Ge(++ g 
) Fl+ trl+Fd drt 

4 dJ.& dFoGt=-_- (3.81 

There exist two possibilities for the integration of the second of Eqs. (3.7). First, the 
function Fs = eonst is its simplest solution. but it contradicts the limiting condition 

for rj ‘-, 0. Second, if we examine the solution F, = -_rl, then this condition is auto- 
matically satisfied. As solutions of the two remaining equations of the system (3.7) it 
is then possible to take arbitrary functions 

Go = Q, (s), fl, = ‘ty (tlf (3.9) 

the only restrictions on which are simply that for n - 0 they must go over into the ex- 
pressions (3.5). 

ft is easy to see that with F,, = -_‘1 the system (3.8) turns into algebraic equations. 
As a result 

that is, the correction to the speed in the first approximation also includes arbitrary 
functions. As one can convince himself by direct verification, the functions F,, Gl 
and H, satisfy the limiting conditions (3.6X 

Formulas (3.9) and (3.1 O} complete the construction of the solution Jn the inner region, 
where the basic dependence v = x/l of the speed on the coordinate turns out to be linear. 
The arbitrariness in the choice of the functions G, and H,, determining the density and 
pressure of the gas reflects different possibilities of action on it in the Initial time period. 
With a change in the character of the impulse these functions will also change. It is re- 
markable that the method of matched outer and inner asymptotic expansions, which is 
essentially a method of analytic continuation of the solution from one region into ano- 
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ther, allows consideration of the arbitrariness, which is evident from a physical point 

of view. 

The divergence of the energy integral in the self-similar solution of the short-blow 

problem is connected [l, 21 with a singularity in the behavior of the gas parameters 

for z, h - --DO. The solution constructed in the inner region allows this difficulty to be 

ellminated. In fact, the functions (0 and Y can be chosen. for example, in such a 

way that they vanish at a finite value of q. Then in the process of expansion the gas in 

a finite interval of time will occupy only a finite part of the initially empty space. If 

it is assumed that in a small neighborhood of the boundary separating it from the vacuum 

a flow of the type of a simple &rimaM wave is achieved, then the speed Vb of the edge 

particles is easily calculated 

where at, is the speed of a sound wave at the initial instant of time in the @iCatiOn 

of the impulse. For a difSerent nature of the flow near. the boundary, Eq, (3.11) cannot 

be used to determine the speed Ub, but it will remain finite for finite valu$s of the 
perturbation pressure. In any case, convergence of the energy integral can be postulated 
for the choice of the functions CD and Y and the construction of the full solution in the 

outer and inner regions. 

4. We show in conclusion how, by use of variations of the basic solution. to consider 
an exterior counter-pressure ~1, which up to now was assumed negligibly small. Let a, 
be the speed of souikl in the undisturbed state. Expanding in series the exact Hugoniot 

relations 17’1 

which in the case under consideration must replace Eqs. (1.2), it is easy to show that 
the power-law expnnent m = -4/6. We introduce the dimensionless time T = t 1 h, 

where 

If we put the small parameter Pl e = q!O = - 
pl A"6 

then the expansions (1.3) for the unknown functions in the outer flow region can be 
written as 

(4.2) 

with the previous values of u%,, ho and pso. Having taken the dimensionless coordinate 
.,a,, of the shock-wave iiont in the form 

J., = i - kF’l* (4.S) 

we have for the speed of its propagation 

C = 9/s m z-‘/s (1 - ‘1s kr”S) (4.4) 

The constant A in formula f4.3) remains at present undetermined; its value will be es- 
tablished later. Using the relations (4.1) and (4.4) we deduce the initial conditions for 

the unknown functions. namely for A = 1 : 
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f-4,‘ - - =Q - '/ak, g_,,, = - ‘yfy, _t IOk, h,,,, = - % + -+- k (4.5) 

These perturbation functions obviously satisfy the system of linear equations (1.5). 
where it is necessary to take m = -‘/I. As above, it is very convenient to change to 
one second-order differential equation for f+. Recalling Eq. (2.2). we have 

S(i_f)$- 1 df._a,, -- 2 (3+ 1%) df 7f-d//,=o 

We divide the solution of Eq, (4.6) into two parts 

f_./, = ‘PI + 42 

and represent the remaining functions in analogous form 

Lr/, 4 s1. + Inpn, h-V. = XI + kXs 

The initial valqes for the quantities introduced in this way follow from (4.5). They give 
the possibility of formulating a Cauchy problem for the functions ‘PI and w. For 

g -“/‘I we find 

w=-WI*, Wti= -%7, 'PO = - 113, dqa/fi =-o/t (4.7) 

We write the lineary independent integrals r’_,,, and f$ of Eq, (4.6) as 

Here the coefficients are 

7 35 35 35 
h==m’ h-6.fj4 9 a,=--, bszz, +z, h_l 

-_ 

Both functions p_ ,/r and p ,A are non-regular at the point E = i, but their linear 
combination 

f&‘ = & fL,, - f’l,, (4.8) 

is, as is easily seen, a regular function at that point. Solution of the Cauchy problem 
(4.7) allows the functions h and cp, to be represented in the form 

‘PI = 4f!.,, + dc,,~ 9% = daft./, + eaft,,, 

with the constants determined in a unique way 

d, = 1.319.10s, e* = -2.327.1@, d, = 1.458.10s, es =P 2.Ogo.1@ 

The ratio d, / cl = -0.567, while at the same time ds /‘es = -0.698. Both these values 
are different from the coefficient - ‘/la r 0.583, that appears in the expression (4.8) 
for L,,, ; therefore the functions cp,.and 9% are nonregular at the point E = 1. 

For arbitrary values of the parameter k in the equation of the shock front, the solu- 
tion of Eq. (4.6) will also contain a singularity at that point. However. by proper choice 
of k the flow field can be made to remain analytic at the intersection with the limit- 
ing characteristic. The evident condition for this is the requirement 

4+kds 7 
el + kez I=-12 

from which k = -1.586. Finally, we find 

f -4,. = er:.,,, E = - 2.056. IO, (4.9) 

For the remaining functions g-/, and h_,,, the following formulas hold: 
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g - - 5 (7Q-“* -% - l/a co (7~)~1+ E ‘h (5 -I- 7E) f;,& + E (6 - 1) (4.10) 

&,, 
h 4‘ SC0 (7.y + E -$- (105 + 203 El f’,, + 29 E (4 - 1) - 1 d4 I 

The constant Co is connected with the constant C in the right-hand side of the integral 
of adiabaticity (2.1) by the relation Co = 6,,C = o 543. 1o2 . 

The constructed solution does not need a special extension in the region situated 
behind the Iimiting characteristic; therefore the representarions (4.2) for the speed, 
density, and pressure can be used for a description of the entire fIow field if one spec- 
ially selects the corrections that take into account the presence of external counter- 
pressure. 

It is clear that the complete solution of the system of Euler equations in the zone 
bounded by a vacuum should contain the analytic continuation considered in the prev!ous 
section. However, terms due to counter-prcsure will not have any effect on the struc- 
ture of the latter. In order to be convinced of this assertion, we extract the asymptotics 
of the functions f_r,,t n-d/r and h+, for k + - 00. It follows from formuIas (4.9) and (4.10) 
that 
_f_$ = 5.%iOs (5 - 4kra, g-4,. = - 7.26.102 (5 - U) _*,,, h_,,, = - 5.66.10s (5 -4k)--;)-‘/t 

The asymptotic representations of the density and pressure take the form 

P = %a(5 - ‘UJ-“’ [ 1 - 7.26. iO+ (5 - 4J.)-a] (4.11) 

P = s/~oplt-4’~ (5 - &)_“f 11 - 5.66 .io2r’ia (5 - 4n)-21 

The correction terms from the differences enclosed in brackets on the right-hand sides of 
the relations (4.11) become arbitrarily small as h --c - 00 for fixed values of time. 
Consequently the self-simiIar solution of the short-bbw problem gives the leading terms 
in the expansions of the parameters of the gas ato in the region behind the Iimiting 
characteristic. 
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ANALYTIC LOTION OF A COMPLEX VARIABLE 
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Expressions for the general solution of the axisymmetric problem obtained 
earlier in terms of two analytic functions [I, 23 are transformed in such a man- 
ner, that only one of these functions remains under the integral sign. This also 
leads to the possibility of solving the axlsymmetric paoblems by employing the 
methods used in the solution of the plane problem. Basically, similar transfer* 
mations were employed in f3 - 51 for the particular case of a plane boundary. 

A series solution for a hollow sphere with various boundary conditions at its 
surface is used to illustrate the method. 

1. As was shown in @I, the components of the elastic displacement in an axisymmr 
etric deformation of a solid of revolution can be written as 

t 

2Ge (z, I) = - & c fxcp Cl + @ - 6) cp’ (6) + 9 (01 gs 6, fit 4 0.5) 
2 
t 

g (t, t;) = V’Cl - q (C - 93 L(1 u, a = Gy, - t - t’, /4& 61 

Here I: and r are the cylindrical coordinates (I is the axis of symmerry), w, n 
are, respectively, the axial and radial displacements of a point, x = 3- 4v, v is the 
Poisson ratio, G is the shear modulus, cp and Q are analytic functions of the complex 
variable 6 = z + CJ t holomorphic in a symmetrical plane region D occupied by the 
meridional section of the body, Z, g are rectangular coordinates lying in the plane of 
the above cross-section ( x -axis coincides with the e-axis), and the points t = z + 

+ir andt=z- ir lie on this plane within D. The order of integration in (1.1) is 
arbitrary. The analytic functions satisfy the condition 


